- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Xuandong (4)
-
Lu, Shenming (4)
-
Wang, Linzhang (4)
-
Xu, Guoqing Harry (4)
-
Zuo, Zhiqiang (4)
-
Wang, Kai (3)
-
Zhang, Yiyu (3)
-
Dou, Wensheng (2)
-
Hussain, Aftab (2)
-
Pan, Qiuhong (2)
-
Wang, Chenxi (2)
-
Amiri Sani, Ardalan (1)
-
Li, Yue (1)
-
Sani, Ardalan Amiri (1)
-
Thorpe, John (1)
-
Wang, Yifei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
null (3)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zuo, Zhiqiang; Wang, Kai; Hussain, Aftab; Sani, Ardalan Amiri; Zhang, Yiyu; Lu, Shenming; Dou, Wensheng; Wang, Linzhang; Li, Xuandong; Wang, Chenxi; et al (, ACM Transactions on Computer Systems)null (Ed.)There is more than a decade-long history of using static analysis to find bugs in systems such as Linux. Most of the existing static analyses developed for these systems are simple checkers that find bugs based on pattern matching. Despite the presence of many sophisticated interprocedural analyses, few of them have been employed to improve checkers for systems code due to their complex implementations and poor scalability. In this article, we revisit the scalability problem of interprocedural static analysis from a “Big Data” perspective. That is, we turn sophisticated code analysis into Big Data analytics and leverage novel data processing techniques to solve this traditional programming language problem. We propose Graspan , a disk-based parallel graph system that uses an edge-pair centric computation model to compute dynamic transitive closures on very large program graphs. We develop two backends for Graspan, namely, Graspan-C running on CPUs and Graspan-G on GPUs, and present their designs in the article. Graspan-C can analyze large-scale systems code on any commodity PC, while, if GPUs are available, Graspan-G can be readily used to achieve orders of magnitude speedup by harnessing a GPU’s massive parallelism. We have implemented fully context-sensitive pointer/alias and dataflow analyses on Graspan. An evaluation of these analyses on large codebases written in multiple languages such as Linux and Apache Hadoop demonstrates that their Graspan implementations are language-independent, scale to millions of lines of code, and are much simpler than their original implementations. Moreover, we show that these analyses can be used to uncover many real-world bugs in large-scale systems code.more » « less
-
Zuo, Zhiqiang; Wang, Kai; Hussain, Aftab; Amiri Sani, Ardalan; Zhang, Yiyu; Lu, Shenming; Dou, Wensheng; Wang, Linzhang; Li, Xuandong; Wang, Chenxi; et al (, ACM transactions on computer systems)null (Ed.)
-
Zuo, Zhiqiang; Thorpe, John; Wang, Yifei; Pan, Qiuhong; Lu, Shenming; Wang, Kai; Xu, Guoqing Harry; Wang, Linzhang; Li, Xuandong (, ACM EuroSys)
An official website of the United States government

Full Text Available